Regression Model for Ames Iowa Housing Prices Using R Take 1

Template Credit: Adapted from a template made available by Dr. Jason Brownlee of Machine Learning Mastery.

SUMMARY: The purpose of this project is to construct a prediction model using various machine learning algorithms and to document the end-to-end steps using a template. The Ames Iowa Housing Prices dataset is a regression situation where we are trying to predict the value of a continuous variable.

INTRODUCTION: Many factors can influence a home’s purchase price. This Ames Housing dataset contains 79 explanatory variables describing every aspect of residential homes in Ames, Iowa. The goal is to predict the final price of each home.

In iteration Take1, we will establish the baseline root mean squared error (RMSE) for further takes of modeling.

ANALYSIS: The baseline performance of the machine learning algorithms achieved an average RMSE of 32,826. Two algorithms (Elasticnet and Gradient Boosting) achieved the top RMSE metrics after the first round of modeling. After a series of tuning trials, Gradient Boosting turned in the best overall result and achieved an RMSE metric of 23,246. By using the optimized parameters, the Gradient Boosting algorithm processed the test dataset with an RMSE of 23,859, which was slightly higher than the prediction from the training data.

CONCLUSION: For this iteration, the Gradient Boosting algorithm achieved the best overall results using the training and testing datasets. For this dataset, Gradient Boosting should be considered for further modeling.

Dataset Used: Kaggle Competition – House Prices: Advanced Regression Techniques

Dataset ML Model: Regression with numerical and categorical attributes

Dataset Reference: https://www.kaggle.com/c/house-prices-advanced-regression-techniques

One potential source of performance benchmarks: https://www.kaggle.com/c/house-prices-advanced-regression-techniques

The HTML formatted report can be found here on GitHub.