Regression Model for Superconductivity Temperature Using Python Take 1

Template Credit: Adapted from a template made available by Dr. Jason Brownlee of Machine Learning Mastery.

SUMMARY: The purpose of this project is to construct a prediction model using various machine learning algorithms and to document the end-to-end steps using a template. The Superconductivity Temperature dataset is a regression situation where we are trying to predict the value of a continuous variable.

INTRODUCTION: The research team wishes to create a statistical model for predicting the superconducting critical temperature based on the features extracted from the superconductor’s chemical formula. The model seeks to examine the features that can contribute the most to the model’s predictive accuracy.

In this iteration, we will establish the baseline mean squared error for comparison with the future rounds of modeling.

ANALYSIS: The baseline performance of the machine learning algorithms achieved an average RMSE of 14.84. Two algorithms (Extra Trees and Random Forest) achieved the top RMSE metrics after the first round of modeling. After a series of tuning trials, Extra Trees turned in the best overall result and achieved an RMSE metric of 9.56. By using the optimized parameters, the Extra Trees algorithm processed the test dataset with an RMSE of 9.32, which was even better than the prediction from the training data.

CONCLUSION: For this iteration, the Extra Trees algorithm achieved the best overall results using the training and testing datasets. For this dataset, Extra Trees should be considered for further modeling.

Dataset Used: Superconductivity Data Set

Dataset ML Model: Regression with numerical attributes

Dataset Reference:

One potential source of performance benchmarks:

The HTML formatted report can be found here on GitHub.