NLP Model for IMDB Movie Sentiment Using TensorFlow Take 1

Template Credit: Adapted from a template made available by Dr. Jason Brownlee of Machine Learning Mastery.

SUMMARY: This project aims to construct a text classification model using a neural network and document the end-to-end steps using a template. The IMDB Movie Sentiment dataset is a binary classification situation where we attempt to predict one of the two possible outcomes.

INTRODUCTION: This dataset contains 50,000 movie reviews extracted from IMDB. The researchers have annotated the tweets with labels (0 = negative, 1 = positive) to detect the reviews’ sentiment.

In this Take1 iteration, we will create a bag-of-words model to perform binary classification (positive or negative) for the Tweets. The Part A script will focus on building the model with the training and validation datasets due to memory capacity constraints. Part B will focus on testing the model with the training and test datasets.

ANALYSIS: In this Take1 iteration, the preliminary model’s performance achieved an average accuracy score of 88.80% after 25 epochs with ten iterations of cross-validation. Furthermore, the final model processed the test dataset with an accuracy measurement of 89.48%.

CONCLUSION: In this iteration, the bag-of-words TensorFlow model appeared to be suitable for modeling this dataset. We should consider experimenting with TensorFlow for further modeling.

Dataset Used: IMDB Movie Sentiment

Dataset ML Model: Binary class text classification with text-oriented features

Dataset Reference: https://www.kaggle.com/columbine/imdb-dataset-sentiment-analysis-in-csv-format

One potential source of performance benchmarks: https://www.kaggle.com/columbine/imdb-dataset-sentiment-analysis-in-csv-format

The HTML formatted report can be found here on GitHub.