Binary Class Image Classification Deep Learning Model for ISIC Challenge 2017 Using TensorFlow Take 3

Template Credit: Adapted from a template made available by Dr. Jason Brownlee of Machine Learning Mastery.

SUMMARY: This project aims to construct a predictive model using a TensorFlow convolutional neural network (CNN) and document the end-to-end steps using a template. The ISIC Challenge 2017 dataset is a binary classification situation where we attempt to predict one of two possible outcomes.

INTRODUCTION: The International Skin Imaging Collaboration (ISIC) is an international effort to improve melanoma diagnosis, sponsored by the International Society for Digital Imaging of the Skin (ISDIS). The ISIC Archive contains the most extensive publicly available collection of quality-controlled dermoscopic images of skin lesions. Since 2016, ISIC has sponsored annual challenges for the computer science community associated with leading computer vision conferences.

For this modeling project, we will make predictions on whether an image represents a melanoma case. In this iteration, we will construct a CNN model based on the VGG19 architecture to make predictions.

ANALYSIS: In this iteration, the VGG19 model’s performance achieved an accuracy score of 81.30% after ten epochs using the training dataset. The same model processed the validation dataset with an accuracy rate of 80.00%. Finally, the final model processed the test dataset with an accuracy score of 80.83%.

CONCLUSION: In this iteration, the VGG19-based CNN model appeared to be suitable for modeling this dataset. We should consider experimenting with TensorFlow for further modeling.

Dataset Used: ISIC Challenge 2017 Dataset

Dataset ML Model: Binary classification with numerical attributes

Dataset Reference:

One potential source of performance benchmarks:

The HTML formatted report can be found here on GitHub.