Binary Classification Model for Kaggle Tabular Playground Series 2021 September Using TensorFlow Decision Forests

Template Credit: Adapted from a template made available by Dr. Jason Brownlee of Machine Learning Mastery.

SUMMARY: This project aims to construct a predictive model using various machine learning algorithms and document the end-to-end steps using a template. The Kaggle Tabular Playground September 2021 dataset is a binary classification situation where we attempt to predict one of the two possible outcomes.

INTRODUCTION: Kaggle wants to provide an approachable environment for relatively new people in their data science journey. Since January 2021, they have hosted playground-style competitions on Kaggle with fun but less complex, tabular datasets. The dataset used for this competition is synthetic but based on a real dataset and generated using a CTGAN. The original dataset deals with predicting whether a customer will file a claim on an insurance policy. Although the features are anonymized, they have properties relating to real-world features.

ANALYSIS: The performance of the preliminary Gradient Boosted Trees model achieved a ROC/AUC benchmark of 0.6496 on the validation dataset. The final model processed the validation dataset with a final ROC/AUC score of 0.6917. When we applied the finalized model to Kaggle’s test dataset, the model achieved a ROC/AUC score of 0.7781.

CONCLUSION: In this iteration, the TensorFlow Decision Forests model appeared to be a suitable algorithm for modeling this dataset.

Dataset Used: Kaggle Tabular Playground 2021 September Data Set

Dataset ML Model: Binary classification with numerical and categorical attributes

Dataset Reference: https://www.kaggle.com/c/tabular-playground-series-sep-2021

One potential source of performance benchmark: https://www.kaggle.com/c/tabular-playground-series-sep-2021/leaderboard

The HTML formatted report can be found here on GitHub.