Template Credit: Adapted from a template made available by Dr. Jason Brownlee of Machine Learning Mastery.
SUMMARY: This project aims to construct a predictive model using various machine learning algorithms and document the end-to-end steps using a template. The Kaggle Tabular Playground October 2021 dataset is a binary classification situation where we attempt to predict one of the two possible outcomes.
INTRODUCTION: Kaggle wants to provide an approachable environment for relatively new people in their data science journey. Since January 2021, they have hosted playground-style competitions on Kaggle with fun but less complex, tabular datasets. The dataset used for this competition is synthetic but based on a real dataset and generated using a CTGAN. The original dataset deals with predicting the biological response of molecules given various chemical properties. Although the features are anonymized, they have properties relating to real-world features.
ANALYSIS: The performance of the preliminary Random Forest model achieved a ROC/AUC benchmark of 0.8433 on the validation dataset. The final model processed the validation dataset with a final ROC/AUC score of 0.8383. When we applied the finalized model to Kaggle’s test dataset, the model achieved a ROC/AUC score of 0.8428.
CONCLUSION: In this iteration, the TensorFlow Decision Forests model appeared to be a suitable algorithm for modeling this dataset.
Dataset Used: Kaggle Tabular Playground 2021 October Data Set
Dataset ML Model: Binary classification with numerical and categorical attributes
Dataset Reference: https://www.kaggle.com/c/tabular-playground-series-oct-2021
One potential source of performance benchmark: https://www.kaggle.com/c/tabular-playground-series-oct-2021/leaderboard
The HTML formatted report can be found here on GitHub.