Regression Model for Kaggle Tabular Playground Series 2021 August Using AutoKeras

Template Credit: Adapted from a template made available by Dr. Jason Brownlee of Machine Learning Mastery.

SUMMARY: The project aims to construct a predictive model using various machine learning algorithms and document the end-to-end steps using a template. The Kaggle Tabular Playground Series August 2021 dataset is a regression modeling where we are trying to predict the value of a continuous variable.

INTRODUCTION: Kaggle wants to provide an approachable environment for relatively new people in their data science journey. Since January 2021, they have hosted playground-style competitions on Kaggle with fun but less complex, tabular datasets. The dataset used for this competition is synthetic but based on a real dataset and generated using a CTGAN. The original dataset deals with predicting the category on an eCommerce product given various attributes about the listing. Although the features are anonymized, they have properties relating to real-world features.

ANALYSIS: After a series of tuning trials, the best AutoKeras model processed the training dataset with a logarithmic loss of 7.9117. When we processed the test dataset with the final model, the model achieved a logarithmic loss of 7.9304.

CONCLUSION: In this iteration, the AutoKeras model appeared to be a suitable algorithm for modeling this dataset.

Dataset Used: Kaggle Tabular Playground Series August 2021 Dataset

Dataset ML Model: Regression with numerical features

Dataset Reference:

One potential source of performance benchmarks:

The HTML formatted report can be found here on GitHub.