Template Credit: Adapted from a template made available by Dr. Jason Brownlee of Machine Learning Mastery.
SUMMARY: The project aims to construct a predictive model using various machine learning algorithms and document the end-to-end steps using a template. The Loan Default dataset is a binary classification situation where we attempt to predict one of the two possible outcomes.
INTRODUCTION: The dataset owner leveraged another source from Kaggle to create a dataset for predicting loan default. The dataset contains the past data on the loan borrowers, and we would develop a machine learning model to classify whether any new borrower is likely to default.
ANALYSIS: The performance of the preliminary Gradient Boosted Trees model achieved a ROC/AUC benchmark of 1.0 on the training dataset. When we processed the test dataset with the final model, the model also achieved a ROC/AUC score of 1.0.
CONCLUSION: In this iteration, the TensorFlow Decision Forests model appeared to be a suitable algorithm for modeling this dataset.
Dataset Used: Loan Default Dataset by M Yasser H
Dataset ML Model: Binary classification with numerical and categorical features
Dataset Reference: https://www.kaggle.com/yasserh/loan-default-dataset
The HTML formatted report can be found here on GitHub.